
www.manaraa.com

Parallel Processing of Large Satellite Images Via Threads

On a Local Area Network

By

Osama Omar Hasan Quzmar

Supervisor

Dr. Ahmad sharieh

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in

Computer Science

Faculty of Graduate Studies

University of Jordan

July 2003

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 B

This thesis was successfully defended and approved

On: July 27, 2003

Examination Committee Signature

Dr. Ahmad Sharieh, Chairman

Assoc.Prof. of Parallel Processing ……………………………

Dr. Ahmed Aljaber, member

Assoc.Prof. of Algorithms ……………………………

Dr. Moh’d Belal Al-Zoubi

Assis. Prof. of Graphics and Pattern Recognition ……………………………

Dr. Mahmoud A. Hassan

Assoc. Prof. of Radiation Detectors ……………………………

Dr. Ismail Moh’d Ababneh

Assis. Prof. of Parallel Computing .……………………………

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 C

Dedication

 To

 My Parent

 My Brothers

My Sisters

 And My Wife

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 D

Acknowledgement

We acknowledge the exceptional efforts of the people at developing this study,

specially Ahmad sharieh for his precious directions.

 We would like to thank the discussion committee: Dr. Ahmed Aljaber, Dr.

Mohammed Al-Zoubi, Dr. Mahmoud Hassan, and Dr. Ismail Ababneh.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 E

List of Contents

List of Tables…………………………………………………………………….viii

List of Figures……………………………………………………………………ix

Appendices……………………………………………………………………….xi

Abstract ………………………………………………………………………….xii

1. INTRODUCTION……………………………………………………………..1

1.1

Introduction…………………………………………………………………….1

1.2 Problem

Statement……………………………………………………………...2

1.3 Literature

Review………………………………………………………………3

1.4 Thesis

Objective……………………………………………………………….6

1.5 Thesis

Outline.…………………………………………………………………7

2. SATELLITE IMAGE PROCESSING AND PARALLEL PROCESSING…9

2.1 Remote Sensing…….……………………………..……………………………9

 2.1.1 Related Fields……………………………………………………………11

 2.1.2 Technical Fundamental………………………………………………….11

 2.1.3 Types of Remote Sensors………………………………………………..13

2.2 Geographic Information System……………………………………………….13

Content Page

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 F

2.3 Fundamental of Satellite Images and Image processing………………………16

2.4 Digital Images………………………………………………………………….18

 2.4.1 Image Processing…………………………………………………………19

 2.4.2 Storage and Supply of Digital Satellite Images…………………………..19

2.5 Image Structure…………………………………………………………………21

2.6 Image Analysis………………………………….………………………………21

2.7 Image Histogram………………………………..………………………………22

2.8 Spatial Filtering…………………………………………………………………23

 2.8.1 Sharpening Filter……….…………………………………………………26

 2.8.2 Smoothing Filter……….…………………………………………………27

2.9 Parallel Processing and Implementation………………………………………...28

2.10 Parallel Programming………………………………………………………….31

3. THREAD PROGRAMMING AND APPLICATION……………….……….35

3.1 What is a Thread?………………………………………………………………35

3.2 Multithreaded Programming……………………………………………………36

3.3 Advantages of Threads…………………………………………………………36

3.4 Challenges of Multithreaded Programming……………………………………38

3.5 Thread Management Concepts…………………………………………………39

3.6 Parallel Thread Model………………………………………………………….40

3.7 Thread Synchronization..………………………………………………………41

3.8 Thread in Client-Server Model…………………………………………………42

4. SIMULATION AND IMPLEMENTATION OF THE SYSTEM………….44

4.1 Basics of Satellite Image Data Samples……………………………………….44

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 G

4.2 General Description of the Proposed Approach……………..…………………45

4.3 Mathematical Model and Implementation of the System………………………47

 4.3.1 Mathematical Model……………………………………………………..47

 4.3.2 Methodology of the System………………………………………………48

 4.3.3 Multithreaded Parallel Processing Model……….………………………..52

4.4 System Overview……………………………………………………………..54

 4.4.1 Hardware………………………………………………………………...54

 4.4.2 Software…………………………………………………………………55

4.5 Calculations and Measurements……………….………………………….…..55

4.6 Result …………….……………………………………………………………56

4.7 Performance Analysis………………………………………………………….65

5. CONCLUSION AND FUTURE WORK……………………………………..67

5.1 Conclusions…………………………………………………………………….67

5.2 Future Work……………………………………………………………………68

REFERENCES……………………………………………………………………69

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 H

List of Tables

Table 2.1 Types of satellite images…………………………………………………17

Table 4.1 Execution time for images of different size on different number

 of threads…………………………………………………………………57

Table 4.2 Speedup for images of different size on different number of threads……57

Table 4.3 Efficiency for images of different size on different number of threads…..58

Table 4.4 Ratio of image size to number of threads, scaled using logarithmic scale

 to base 10…….……………………………………………………………58

Table Page

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 I

List of Figures

Figure 2.1 A portion of an image and the corresponding digital values………..…13

Figure 2.2 The concept of layers in GIS………………………………………… 14

Figure 2.3 Schematic of data flow in a non-photographic remote sensing

 mission………………………………………..……………………….20

Figure 2.4 Normalized histogram…………………………………………………23

Figure 2.5 Histogram of basic image types….……………………………………23

Figure 2.6 The spatial convolution process for the input pixel at location

 I(x,y), creating the output pixel at location O(x,y)……………………..25

Figure 2.7 Use of convolution mask………………………………………………..26

Figure 2.8 Sharpening filter………………………………………………………...27

Figure 2.9 Smoothing filter………………………………………………………...28

Figure 2.10 Domain decomposition partitioning…..……………………………….32

Figure 2.11 Types of domain decomposition……………………………………….32

Figure 2.12 Functional decomposition………………….…………………………..33

Figure2.13 Load balancing……………………………….…………………………34

Figure 3.1 Possible thread states…………………………..………………………..40

Figure 3.2 Single program illustrates parallel threads……..………………………..41

Figure 3.3 Client-server architecture of distributed application…….………………42

Figure Page

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 J

Figure 3.4 Multithreaded client-cerver Architecture…………..……..……………..43

Figure 4.1 Data diagram and transmission for the system……………………….…46

Figure 4.2 Example of image decomposition technique for Amman city…..………49

Figure 4.3 An example of processing steps………………………………………...51

Figure 4.4 System architecture…………..………………………………………..55

Figure 4.5 Calculation model of the system……………………………………….56

Figure 4.6 Execution time (Secs) versus different number of threads for

 several images with different size………………………………………59

Figure 4.7 Execution time (Secs) versus different number of threads on image

 Size 3120x2990………………………………………………………..60

Figure 4.8 Execution time (Secs) versus different images size on 16 threads…….60

Figure 4.9 Speedup versus number of threads working on different images size…61

Figure 4.10 Efficiency 100% versus number of threads working on different…….62

Figure 4.11 Ratio of different images size to different number of threads……..62-65

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 K

Appendices

Appendix 1 Abbreviations and acronyms………………………………………….75

Appendix 2 Summary of thread architectures for various operating system………77

Appendix 3 Units of measurement frequently used in remote sensing…….………78

Appendix 4 Examples of some types of satellite images….……………………….79

Appendix Page

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 L

Parallel Processing of Large Satellite Images via Threads

On a Local Area Network

By

Osama Omar Quzmar

Supervisor

Dr. Ahmad sharieh

Abstract

With the Rapid development of remote sensing and observation technology, such as

satellite images data needs large-scale processing and storage systems that provide a

high performance at low cost. Parallel processing and distributed computing is rapidly

becoming the standard base for high performance and large-scale computation.

Machines connected via a Local Area Network (LAN) can be used for centers that do

not have multi-processors machines.

 This thesis proposes a solution that decomposes an image into sub-images; the

image processing is then applied to each sub-image. Creating a number of threads on

the server and three threads on each client around the LAN. The multithreaded to

read, process, and write the sub-image can run concurrently.

 This solution reduces both: time, which can be the main challenge for processing

large images, and the memory requirement. The measurements and results of

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 M

experiments indicate that multithreads on a LAN increase the efficiently of distributed

LAN. The tested samples of data show that nine threads are the best for cost effective

application on the proposed system. The efficiency (E) for threads: three to nine

threads is higher than 80% for images of size 3120x2990.Although, the highest value

of E = 0.95 is achieved when the ratio of image size to number of threads was

3,109,600 pixel/thread, where number of threads was three. These indicate that, the

ratio of image size to number of threads about six to seven million pixel/thread will

produce a high performance.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

1

1. INTRODUCTION

1.1 Introduction

This chapter gives an introduction to the existing digital image processing techniques,

parallel processing techniques, the research problem, the study objectives, and

investigation of procedures described in this thesis.

 A literature survey was undertaken to study the existing parallel image processing.

Thread was selected for this study. Indeed, a fewer techniques of parallel processing

that completely depend on threads, specially, in the case of parallel processing for

satellite images, are used.

 The field of parallel processing is concerned with architectural and algorithmic

methods for enhancing the performance or other attributes (e.g. cost effectiveness,

reliability) of digital computers through various forms of concurrency. Even though

concurrent computational has been around since the early days of digital computers.

Recently, it has been applied in a manner, and on scale to better performance as super

computers (Behrooz Parhami, 1999).

 Threads are known as a lightweight process and may run concurrently to perform a

task. A thread-driven architecture reduces over head. It reduces the amount of

information regarding the state of execution of a process that has to be saved and loaded

in to memory. They share sections of the same memory areas

(Yunqing P. Zhang, 1999).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

2

 The Threads are very small compared with processes. Thread creation is relatively

cheap in terms of CPU costs; threads are like memory frugal, they increase the

performance in a uniprocessors environment. When application performs operation on

file or socket I/O (Thuan and Pankaj, 1999).

 A literature review of existing parallel processing for digital images standards, and

techniques to improve parallel parameters such as high-performance are discussed in

Section 1.3. The thesis objectives are explained in Section 1.4. And the thesis outlines

are given in Section 1.5.

1.2 Problem Statement

 Since remote sensing image data (satellite images) process two dimensional image

data, it needs very high load, very high space (memory requirement) in computations.

The processing load has been increased year after year by the following factors

(Fokuda et al, 2000):

1- Increment of processing requirement: Demand for data has been increasing,

because use of remote sensing image data has become available in various fields.

2- High-resolution of sensor: Size of image data becomes much bigger than before.

Because resolution of the surface of the earth was enhanced by technological

advanced and much information quantity data could acquire.

3- On-board recording and data relay: Data Acquired from satellites have been

increasing, because we can observe the surface of the earth globally through the

data recording by On-broad and data-relay satellite.

4- Complexity of processing algorithm: Growing number of processing has been

performing the same quality data.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

3

5- Requirement to processing software and environment of hardware/software had

been changed.

In addition to these situation, some countries like Jordan do not have supercomputers,

but they have LAN.

1.3 Literature Review

The areas covered in the literature survey are Parallel implementation, and performance

analysis.

 Chaver et al. (2002) discussed in their several issues relevant to the parallel

implementation of a 2-D Discrete Wavelet Transform (DWT) on general purpose their

interest in this transform is motivated by its usage in an image fusion application which

has to manage large image sizes, making parallel computing highly advisable. They

have also paid much attention to memory hierarchy exploitation, since it has a

tremendous impact on performance due to the lack of spatial locality when the DWT

processes image columns.

 Kasahara et al. (2001) presented the implementation scheme of the automatic coarse

grain task parallel processing using OpenMP API as an example of realization and its

performance on an off the shelf SMP machine. OSCAR compiler generates coarse grain

parallelized code, which forks threads only once at the beginning of a program and joins

only once at the end. To minimize the overhead though hierarchical, coarse grain task

parallelism are automatically exploited. In the performance evaluation, the OSCAR

compiler with XL Fortran compiler gave us scalable speed up for application programs

in perfect and significant speed-up compared with native XL Fortran.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

4

 Hawick et al.(2002) described the distributed computing approaches they have used

to integrate bulk-data and meta-data sources. The grid computing techniques they have

used embed parallel services in an operational infrastructure. They described some of

the parallel techniques for data assimilation; for image and map data processing; for

data cluster analysis; and for data mining. They also discussed issues related to

emerging standards for data exchange and design issues for integrating together data in

a distributed ownership system. They include a historical review of their work in this

area over the last decade which leads us to believe parallel computing will continue to

play an important role in Geographical Information System (GIS). They speculate on

algorithmic and systems issues for the future. They get a good high-performance result.

 Hawick and James (1999) describe distributed algorithm for processing remotely

sensed data such as geostationary satellite imagery. They built a distributed data

repository based around the client-server computing model across wide-area ATM

networks, with embedded parallel and high-performance processing modules. They

focus on algorithm for classification, analysis of the data. They consider characteristics

of image data collected from the Japanese GMS5 geostationary meteorological satellite.

They have measured good speed-up performance for the parallel and distributed

components of their system.

 Yang and hung (2000) show that, scalable computing clusters, ranging from a cluster

of PCs or workstations to symmetric Multiprocessors (SMPs), are rapidly becoming the

standard platform for high-performance and large-scale computing. To utilize the

parallelism of cluster of SMPs, they present the basic programming techniques by using

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

5

PVM to implement a message-passing program. The experimental results show that

their Linux/PVM cluster can achieve high speed-up for application.

 Giess et al. (1999) presented the design and implementation of a parallel system for

interactive segmentation and visualization of three-dimensional medical images which

is distributed on a heterogeneous cluster of work stations or personal computers. All

image-processing functions are multithreaded to use the advantages of symmetric

multiprocessors. Its platform-independence is achieved using standardized libraries like

message passing interface (MPI) and POSIXthreads.

 The use of MPI and POSIXthreads allows interoperability in heterogeneous

environment. With this system, they achieved the integration of several image

processing and visualization algorithm into one parallelization scheme avoiding

repeated redistribution of large volume data.

 Peppers (Taylor et al., 1999) used a distributed parallel computing, tile-based

pipelined approach to process remotely sensed image data products, which are

characterized by their very large image size (often more then 500MB). The method

made use of the inherently localized nature of most images processing algorithms to

formulate the division of the effort or labor, both spatially across the image and

temporally along the pipeline of transformations. This formulation can be used to split

the load among all available processing units, either using multiple threads of execution

on a multi-CPU computer, or using a message passing technique (MPT) to coordinate

multiple processes distributed across a network cluster of computer.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

6

 CASA CALCRUST application was develop to interactive 3D-visualization program

for geophysical application whose input data includes seismic, landsat, and topographic

databases distributed over a wide-area network along with a heterogeneous collection of

supercomputer server (Bergman et al., 1998). The output was a high resolution, full-

color view of the earth’s crust that can be rotated, zoomed, sliced, and “flown over” by

a scientist sitting at a workstation. With conventional technology, each image requires

weeks of computation on super-minicomputers, but it was the goal of this effort to

distribute the application among the supercomputer on the CASA network to allow

renderings to be produced in under one second.

 Pathfinder inputs sensor data reading obtained from satellite traversing polar orbits

and output a 12 band, 8km-resolution image of the world. In this study, the goal is to

map Pathfinder to a multiprocessor (Saltz et al., 1999). It partitions the output image

horizontally (by latitude) and to have each processor sample the input to determine the

map between the input data and the output image. The output image is too large to be

stored (used for application), so the process of carrying out successive update to the

output image is formulated as an out-of-core computation. Once updates are completed,

rewriting the partitioned image from local disks and local memories into persistent

storage produces the final results.

 1.4 Thesis Objectives

This thesis concentrates on using the advantage of thread in parallel computing for

processing large satellite images. The primary objective is to simulate and implement a

parallel processing of large satellite images via threads on a Local Area Network

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

7

(LAN). It aims to reduce the amount of computation for loading large satellite images,

and reduce the amount of space (memory requirement).

1.5 Thesis Outline

This section gives a brief description of each of the following chapters.

Chapter Two: Satellite image processing and parallel processing: It includes four

sections, section 2.1 Remote Sensing: describes remote sensing, what is it?, Its

characteristics, related fields of remote sensing, and technical fundamentals of remote

sensing. Section 2.2 (GIS): it describes the GIS definition, and it’s applications.

 Section 2.3 Fundamentals of satellite images and image processing describes the

basics of satellite images, types of satellite images, storage and supply of digital

satellite images, and image structure. Digital image processing will be presented in this

section as digital image definition, image-processing definition, and reasons for digital

image processing, digital image processing operation, image histogram, and spatial

filtering.

 Section 2.4 parallel processing and implementation: describes parallel processing

methods, concept and terminology in parallel processing, types of parallel

computations. Parallel implementation measurments will be taken into account like

speed-up and efficiency to show performance of computing, parallel programming

models, design parallel program, synchronization and parallel processing with parallel

processing.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

8

Chapter Three: Threads programming and application: describes related concepts

and terminology of threads, synchronization concepts, advantage and disadvantage of

threads, challenges of multithreaded programming. The chapter describes threads

interface, thread management. The most important section in this chapter is threads in

Distributed applications.

Chapter Four: Simulation of the system: describes the definition of the system, how

it works, its simulation procedure, its input and output, and its adaptation to run on a

LAN. Finally the system will be tested on collecting large satellite images. The

implementation results with their analysis and performance comparison will be

presented.

 Chapter Five: conclusions, suggestion, and future work: This chapter gives the

conclusions, suggestion, and future work.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

9

2. SATELLITE IMAGE PROCESSING AND PARALLEL

PROCESSING

There are numbers of people who want to use remotely sensed data and Geographical

Information System (GIS) data. The different applications that they want require

increasing amounts of spatial, temporal, and spectral resolution. Some users are

satisfied with a single image a day, while others require many images per an hour

(Escobar et al., 2000).

 The subject matter of satellite remote sensing is expanding very rapidly. In only two

and a half decades the exacting technology of earth observation satellites has progressed

from experimental and limited to quasi-operational and global. The next decade will see

yet more operational satellite systems for earth observation, with developments such as

the polar platform and imaging radar system (Gupt and Ravi.P, 1991). By the next

century this little planet will be closely and continuously monitored by a band of

satellites and sensors in space.

2.1 Remote Sensing

 Remote sensing is defined as the art and science of obtaining information about an

object by a device that is not in direct contact with it (Sabins and Jr.F, 1987). In a sense

most information is obtained by remote sensing since even our eyes are not in direct

contact with the object we see. However, in a technological context, remote sensing

usually refers to data gathered by sensors and instruments that measure emitted or

reflected electromagnetic radiation which is formatted digitally so it can be viewed

pictorially or analyzed by computers (Sanchez and Canton, 1999).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

10

 Data acquired by remote sensing can be converted into information by visual study,

computer analysis and classification, microcomputer processing, or by a combination of

visual and digital analyses (Richason, 1983).

 Satellite remote sensing is the use of sensors, normally operating at wavelengths from

the visible (0.4 µm) to microwave (25cm), on board satellite to collect information

about the earth’s atmosphere, ocean land and ice surface. Commonly the information is

collected in two-dimensional form an array of digital data. In atmosphere and

oceanographic application the data collection may be one-dimensional, for example, the

vertical temperature profile of the atmosphere (Harris, 1987).

 Remote sensing satellites orbit the Earth at the variety of altitude from low polar

(200km) to high equatorial (36,000km). Their sensor gathers electromagnetic energy

reflected emitted or back scattered from part of the Earth-atmosphere system below the

satellite (Harris, 1987).

 There are some of the reasons why satellite is a useful source of information. One of

these reasons is that the data from satellite remote sensing commonly in a form suitable

for computer processing. In fact, the vast quantities of data produced by satellite remote

sensing demands rapid computer processing. For example, a Landsat Thematic Mapper

(TM) scenes has 6500x6920 pixel and seven wavebands: a total of 273 Mbytes of data

for just one scene (Harris, 1987).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

11

2.1.1 Related Fields

The images obtained by satellite and spacecraft are varied in nature. In the first place,

the imaging instrument can be aimed toward earth, or toward any other part of the

universe. In the context of remote sensing concentrate on images obtained by earth-

orbiting and earth observing satellites and let the astronomers and planetary scientists

deal with images of other celestial bodies (Sanchez and Canton, 1999). For example,

1- Satellite images contain geographical information that is useful for creating or

updating charts or maps. In this case, the image processing operation refers to the

geophysical sciences, such as geodesy and cartography.

2- Satellite images of the earth are of interest to plant science. The detailed

investigation of plant life is possible because the living leaf shows a unique spectral

behavior. For this reason, remotely sensed images are used in classifying and

mapping vegetation.

3- Remotely sensed images give geo-scientist a board-scale perspective that is not

available from ground observation, as well as a measurement of the reflected and

emitted wavelengths of large-scale geological objects.

2.1.2 Technical Fundamental

Remote sensing is a relatively new field: many of its fundamental facts are not yet

known. Every year new investigation methods and interpretation of exiting data are

discovered. However, there are certain scientific certainties and research principles that

appear to be fundamental to the technology (Sanchez and Canton, 1999). For example,

1- Every sensor is limited by the size of the smallest area that can be recorded and

stored. A sensor’s resolution as being of so many kilometers or meters. For

example, the multi-spectral scanner (MSS) on board the Landsat satellites has a

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

12

resolution of approximately 80m, while the Thematic Mapper (TM) instrument on

the same series of satellites has a resolution of approximately 30m. These numbers

indicate the size of the discrete elements in the image, called picture element or

pixels.

2- Different objects or features may have different intensities in their radiometric

response over the same spectral region. This feature of remotely sensed images

allows detecting objects and details of the landscape based on their relative

brightness.

3- Most remote sensed images are stored in digital format by first dividing the

image into small, equal-sized areas called pixels and then assigning to these areas a

value depending on its brightness. In this manner, graphic information can be

represented digitally in order to make possible the use of computerized quantitative

processing methods. By the same token, digitally stored images can be displayed

graphically using conventional computer graphics techniques. Figure 2.1 shows a

portion of an image and the corresponding digital values. The square blocks

represent pixel densities in the range 0 to 255. Black is represented with a pixel

value of 0 and white with value 255. The values between 0 and 255 are a scale of

gray shades. Although the digital values of the image pixels are often derived

directly by the sensor device, these values can also be obtained from the image data

by means of an optical scanner’s device. The digital values can be used to

reconstruct the image using standard computer graphics operations.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

13

 (a) (b)

Figure 2.1 a) a portion of an image b) corresponding digital values

2.1.3 Types of Remote Sensors

Sensors can be divided into two groups: passive and active. Passive sensing resembles

the way our eyes operate, by detecting the radiation reflected by the sensed objects from

the sun (or another source of illumination). Active sensing is achieved in the reverse

manner: the energy is transmitted by the sensor itself, bounces back on impact with the

object, giving a ‘backscatter’ echo which is registered by the sensor. In remote sensing,

microwave radar (Radio Detection and Ranging) operates by active sensing (Kingston

center of GIS, 2000).

2.2 Geographic Information System (GIS)

A GIS is a system of hardware, software and procedures to facilitate the management,

manipulation, analysis, modeling, representation and display of georeferenced data to

solve complex problems regarding planning and management of resources

(Escobar et al., 2000).

 A more comprehensive and easy way to define GIS is the one that looks at the

disposition, in layers (Figure 2.2), of its data sets. "Group of maps of the same portion

of the territory, where a given location has the same coordinates in all the maps

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

14

included in the system". This way, it is possible to analyze its thematic and spatial

characteristics to obtain a better knowledge of this zone (Escobar et al., 2000).

Figure 2.2 The concept of layers in GIS

GIS systems store and process data in tow formats, vector and raster. In vector data

model, the world is represented as a mosaic of interconnecting lines and points

representing the location and boundaries of geographical entities. The raster data model

has come out of aerial and satellite imaging technology, which represents geographical

objects as grid-cell structures known as pixels (Kingston center of GIS, 2000).

 In broad terms, a Geographic Information System could be defined as a set of

principles and techniques employed to achieve one (or both) of the following objectives

(Kingston center of GIS, 2000):

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

15

1- Finding a suitable location that has the relevant attributes. For example, finding

a

 suitable location where an airport, a commercial forest or a retail outlet can be

 established. This is usually achieved through the use of Boolean (logical)

 operations.

2- Querying the geographical attributes of a specified location. For example,

 examining the roads in a particular locality, to check road density or find the

 shortest path, and so on. This is often achieved by ‘clicking’ onto the location or

 object of interest, and examining the contents of the database for that location or

 object

 GIS Application

Mapping locations, Mapping quantities, Mapping densities, Finding distances, and

Mapping and monitoring change are all applications of GIS.

1- Mapping locations: GIS can be used to map locations. GIS allows the creation of

 maps through automated mapping, data capture, and surveying analysis tools.

2- Mapping quantities: People map quantities, like where the most and least are, to

 find places that meet their criteria and take action, or to see the relationships

 between places. This gives an additional level of information beyond simply

 mapping the locations of features.

3- Mapping densities: While you can see concentrations by simply mapping the

 locations of features, in areas with many features it may be difficult to see which

 areas have a higher concentration than others. A density map lets you measure the

 number of features using a uniform real unit, such as acres or square miles, so you

 can clearly see the distribution.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

16

4- Finding distances: GIS can be used to find out what is occurring within a set of

 distance features.

5- Mapping and monitoring change: GIS can be used to map the change in an area

 to anticipate future conditions, decide on a course of action, or to evaluate the

 results of an action or policy.

2.3 Fundamentals of Satellite Images and Image Processing

Many types of remote sensing images are routinely recorded in digital form and then

processed by computers to produce images for interpreters to study. The simplest form

of digital image processing employs a microprocessor that converts the digital data tape

into a film image with minimal corrections and calibrations. At the other extreme, large

mainframe computers are employed for sophisticated interactive manipulation of the

data to produce images in which specific information has been extracted and

highlighted.

 Satellite has a spatial resolution of about 1 kilometer and becomes increasingly

distorted further a way from the orbit path because of the wide viewing angle and the

curvature of the earth. After data are transmitted to ground stations, the measurements

are calibrated and corrections are applied. Data are corrected geometrically to reduce

distortion, and location information is added. The data are then released for further

processing (Anderson and Stonbarker, 2000).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

17

Types of satellite images

Satellite images can be classified as in table 2.1

 Table 2.1 classification types of satellite images.

Image Type Explanation Featurs

Standard Infrared

Satellite image

Give an excellent representation of the

location and intensity of the actual

clouds despite being based upon

temperatures. The temperatures shown

are the highest levels of clouds above

the earth. When there are no clouds at

all, the temperature of the earth is sensed

and this is typically warmer than if there

were clouds above the location (Canada

Avalanche Association, 2000).

Sometimes on clear, very cold

nights the temperature at the

earth’s surface is colder than

temperature a loft (this is referred

to as an inversion).

Enhanced Infrared

Satellite image

Similar to standard infrared satellite

images, it turns from white to vibrant

colors with colder temperatures.

Highlighting the stronger storms. The

raw satellite data also allows the user to

see more detail than the standard image,

as well as land and sea surface

temperatures (AccuWeather, 2000).

It is difficult to see the small

differences in temperature of the

clouds near the edge of the scale,

and turning gray to white is

sometimes not visible enough to

the naked eye

Visible Satellite

image

It is literally photographs of the earth. It

shows clouds in the visible portion of

the electromagnetic spectrum. They will

be blank during the night

(Commonwealh of Australia, 2002).

Visible satellites generally show

low clouds, fog and snow cover

well than infrared images and can

very detailed

Visible Infrared

Satellite image

Combines the visible satellite with the

infrared satellite to make one image,

which shows the most detail, possible,

24 hours a day. Often quick moving

upper-level clouds can be seen skirting

over lower-level clouds, especially in

animation. During the night time the

image is a standard infrared image,

which is gray-scale, with black being the

hottest temperatures, and white being

the coldest. Generally colder cloud tops

indicate stronger storms (Commonwealh

of Australia, 2002).

When the sun rises, the standard

infrared image is mixed with the

visible satellite image. Blue areas

are from the infrared; yellow

areas are from the visible; white

area is a mix of two. Without

changing to a separate image or

comparing images, you are able to

see the temperature data from the

IR

Water vapor Satellite

image

Shows detailed water vapor data on an

eye-appealing scale from deep red to

bright green (dry to moist) which

enables the user to easily pick out upper-

level circulation’s and intrusions of wet

or dry air (AccuWeather, 2000).

Water vapor images primarily

show moisture from 18000 feet

above the earth’s surface to the

top of the atmosphere. help in

identifying upper level winds and

jet streams for use as a tool to

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

18

predict weather system movement

2.4 Digital Images

A digital image is composed of discrete point of gray tone, or brightness, rather than

continuously varying tones. It is composed of a rectangular array of pixels, each

representing a particular (x,y) location, and each with a digital brightness data value.

The digital image exist merely as a large array of numbers (data values) that, when

arranged properly and displayed as brightness, forms an image (Baxes, 1994).

 An image is generally sampled into a rectangular array of pixels. Each pixel has an

(x,y) coordinates that corresponds to its location within the image. The x coordinate is

the pixel’s horizontal location; the y coordinate is its vertical location. We can think of

x location as the column in which the pixel is located and the y location as the raw in

which the pixel is located, the pixel at location (0,0) is in the upper left corner of the

image (Baxes, 1994).

 Satellite remote sensing produces very large quantities of digital data. A single

Landsat TM scene covering a ground area of 170Km x 185Km contains 273 Mbytes of

data and occupies seven magnetic tapes when written at a tape density of 1600 bits per

inch. Each Satellite Probatoire d’ Observation de la Terre (SPOT) High-Resolution

Visible (HRV) multi-spectral scene covering a ground area of 60Km x 60Km contains

27 Mbytes of data, and the SPOT operators have confirmed that the data supply is

assured for over a decade.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

19

 National Oceanic and Atmospheric Administration (Noaa) satellites can produce over

2,500 Mbytes of data from the Advanced Very High Resolution Radiometer (AVHRR)

each day. Clearly there is a data mountain in satellite remote sensing, and equally

digital processing is the only sensible way of handling these vast quantities of

information about our environment (Harris,1987).

2.4.1 Image Processing

Image processing, in general terms, refers to the manipulation and analysis of pictorial

information. In this case, pictorial information means a two-dimensional visual image.

Any operation that acts to improve, correct, analyze, or in some way change an image is

called image processing (Baxez, 1994).

 Certainly the most powerful image processing system we see and use every day is the

one composed of the human eye and brain. This biological image processing system

focuses, acquires, enhances, restores, analyzes compresses, and stores images at

astounding rate.

2.4.2 Storage and Supply of Digital Satellite Images

Many types of remote sensing images are routinely recorded in digital form and then

processed by computers to produce images for interpreters to study. The simplest form

of digital image processing employs microprocessors that converts the digital data tape

into a film image with minimal correction and calibrations. At the other extreme, large

mainframe computers are employed for sophisticated interactive manipulation of the

data to produce images in which specific information has been extracted and

highlighted (Sabins, 1987).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

20

 Most commonly, the remote sensing data, as received from satellites, is stored on

High Density Digital Tapes (HDDT’s) as in Figure 2.3. The data is partially corrected,

Per-processed and reformatted for supply to users in various media. The computer

compatible tape is the most widely used medium to distribute digital data. The flexible

diskette is also used to distribute data; however, they have limited storage capacity and

are normally used for pack-up purpose. Further, with the development of the electronic

technology, there seems to be a good prospect of utilizing compact disks (CD-

technology) for this purpose in the future, additionally, as is obvious, the scanner digital

imagery is widely used as analogue film products for visual interpretation

 (Gupta, 1991).

 Sensor on-board Processing Communication Satellite

 Ground

 Ground

 Receiving station

Figure 2.3 Schematic of data flow in a non-photographic remote-sensing mission.

However, the storage and distribution on film has several limitations:

1- The quality of the film may deteriorate with age.

2- Reproduction, for example for distribution is accompanied by loss of

information.

3- Repeatability of result is not ensured.

HDDT
Pre

processing

films

CD

flopy

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

21

4- Out of the total range of 128 or 256 gray levels, the human eye on film products

differentiates only 20-30.

5- Digital processing requires re-conversion into digital data.

2.5 Image Structure

One can think of any image as consisting of tiny, equal areas, or picture elements,

arranged in regular rows and columns. The position of any picture element, or pixel, is

determined on an XY coordinate system; in the case of landsat images, the origin is at

upper left corner of the image. Each pixel also has a numerical value, called a digital

number (DN), that records the intensity of electromagnetic energy measured for the

ground resolution cell represented by that pixel. Digital numbers range from zero to

some higher numbers on a gray scale. The image may be described in strictly numerical

terms on a three-coordinate system with X and Y location each pixel and Z giving the

DN, which displays a gray-scale intensity value. Images may be originally recorded in

this digital format, as in the case of Landsat. An image recorded initially on

photographic film may be converted in to digital format by a process known as

digitization (Sabins, 1987).

2.6 Image Analysis

Image Analysis operation generally do not produce pictorial results. Instead, they

produce numerical or graphical information based on characteristics of the original

image. Image analysis breaks an image into discrete objects and then classifies those

objects using some measurement process. Additionally, an analysis operation can

produce image statistics. Common image analysis operation includes extraction and

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

22

description of scene and overall image features, automated measurements, and object

classification (Baxes, 1994).

2.7 Image Histogram

A histogram is a graphic plot of pixel values within an image. The simplest histogram,

called a brightness histogram, shows the distribution of brightness levels by

representing pixel intensities along the horizontal axis and the number of pixel along

vertical axis. The brightness histogram is a powerful tool for image processing

operation since it provides information about the distribution of gray levels, which can

be used in many transformations (Sanchez and Canton, 1999).

 The calculation of image histogram requires sampling every pixel value while

keeping count of number of pixel at each intensity level. For example, a pixel intensity

range of 8 bits (0 to 255) can be represented along the x-axis, while the count of the

number of pixels at each intensity level is represented along the y-axis (Baxes, 1994).

The resulting histogram allows us to visually appreciate how he gray levels are

distributed in the image. One objection to this scheme is that the vertical size of the

histogram is undetermined. For example, an image with 1000 pixels in which half of

them fall at the same intensity level would require 500 vertical units, while another one

in which the highest intensity level had only 100 pixels would generate a graph one-

fifth the vertical size. A possible solution is to normalize the vertical element of the

histogram by assigning a maximum height to the most abundant intensity level and

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

23

making all other pixel counts a function of this most abundant one. Figure 2.4 show

normalized histogram (Sanchez and Canton, 1999).

 The horizontal axis of the histogram show pixel intensities, the distribution pattern

can be used to determine image contrast as ell as its prevalent lightness or darkness. if

most of the image data is concentrated toward the lower brightness values, then the

image is dark. On the other hand, if the data concentrated towards the higher brightness

values, then the image is bright. If the data is distributed though a large portion of the

brightness rang, the image shows high contrast; if the contrast is not low (Sanchez and

Canton, 1999). Figure 2.5 shows these four basic image types.

Figure 2.5 Histogram of basic image types

Figure 2.4 Normalized histogram

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

24

2.8 Spatial Filtering

Before any remote sensing image can be made available for mapping, it must be cleared

of errors caused by geometric displacement or atmospheric interference. The common

sources of error in satellite imagery are Orbit and flight errors, Earth curvature, Earth

rotation, Rough terrain, and atmospheric interference (cloud, fog and smog).

 Digital correction of image errors is made possible by computerized image

processing techniques. Remote sensing images are normally kept in digitized form

(recorded in binary code). Correcting the geometric errors of individual images is

usually undertaken by giving the computer the correct coordinates of a number of

control points (points whose position is known exactly) on each image

(Sanchez and Canton, 1999).

 Spatial filters are implemented by means of a process called spatial convolution or

finite impulse response (FIR) filtering. In this case, a two-dimensional pixel kernel is

moved across the image, pixel by pixel. The result of a mathematical operation on the

elements in the kernel is placed in the output set. The calculation is defined as a linear

process since each of the elements in the kernel is multiplied by a constant factor called

the convolution coefficient (Spencer, 2000). The convolution coefficient (cc) can be

expressed as in equation 2.1

 f
 cc ………..(2.1)
 e

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

25

Where f is a multiplier and e is the number of element in the kernel. The factor f can

vary for different element in the kernel, while e remains the same. For a 3 by 3 kernel,

the convolution coefficients are labeled as follows:

 a b c

 d e f

 g h i

The array of cc is called convolution mask. Every pixel in the input image is evaluated

with its eight neighbors, using this mask to produce an output pixel value as show in

Figure 2.6

 Figure 2.6 The spatial convolution process for the input pixel at location

 I(x,y), creating the output pixel at location O(x,y).

The result is placed in the output image at the same center pixel location. This process

occurs for each pixel in the input image. Equation 2.2 computes the spatial convolution

process

 O(x,y) = aI(x-1,y-1) + bIi(x,y-1) + cI(x+1,y-1) + dI(x-1,y) + eI(x,y) + fI(x+1,y) +

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

26

gI(x-1,y+1) + hI(x,y+1) + iI(x+1,y+1) …………..(2.2)

Every input pixel is processed through the equation, creating a corresponding output

pixel value (Sanchez and Canton,1999).

 Once the convolution coefficient has been determined for every kernel element, then

the calculation of the output value consists of multiplying each value input by the cc

and adding all of them. Figure 2.7 shows a convolution mask applied to an input pixel.

Figure 2.7 Use of convolution mask

2.8.1 Sharpening filter

Sharpening filters help reduce blur in an image by raising the proportion of its high

frequency components. Because of this they are also known as high pass filters. They

allow high frequencies to pass unchanged but attenuate low frequencies. It’s a

neighborhood operation, which passes a small window (often 3x3 or 5x5 pixels in size),

over an image and modifies each pixel based on its neighbors

 (Sanchez and Canton, 1999). A common sharpening pass mask is composed a nine in

the location with –1s in the surrounding locations:

 -1 -1 -1

 -1 9 -1

 -1 -1 -1

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

27

 The most visible effect of a sharpening filter is a general increase in the contrast,

which makes the resulting image appear sharper than the original one. Figure 2.8 is an

example of image sharpening as applied by sharpening filter.

 Figure 2.8 Sharpening filtering

2.8.2 Smoothing filter

Smoothing filter reduce noise in an image by lowering the proportion of its high

frequency components. Because of this they are also known as low pass filters.

They allow low frequencies to pass unchanged but attenuate high frequencies.

The most visible effect of a smoothing filter is a general softening of the contrast which

makes the resulting image appear less sharp that the original one. A common smoothing

convolution mask is composed of all nine coefficients having the value of 1/9:

 1 1 1

 9 9 9

 1 1 1

 9 9 9

 1 1 1

 9 9 9

 This mask carries out a straight pixel brightness averaging process, as describe earlier.

It is often referred to as 1 (9 x 1/9 = 1) and that they are all positive numbers. These tow

facts hold true for all low-pass masks. A smoothing filter is a neighborhood function, it

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

28

emphasizes areas with gradual change and de-emphasizes areas with rapid change. This

effectively smoothes an image and makes edge features less apparent. Figure 2.9 is an

example of image smoothing.

 Image with noise Same image after smoothing filtering

Figure 2.9 Smoothing filtering

2.9 Parallel Processing and Implementation

Scientists and engineers are continually looking for ways to test the limits of theories,

using high-performance computing to allow them to simulate more realistic systems in

greater detail. Parallel computing offers a way to tackle these problems in a cost-

effective manner.

 Current strategies for supporting high performance parallel computing often face the

problem of large software overheads for process switching and interprocessor

communication (Hum et al., 1994). These overheads limit the range of applications,

which can be effectively mapped to this architecture. While some architectures have

been proposed to deal with the problems of overheads, like thread, which is a new

approach, can execute a wide range of application efficiently.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

29

Parallel Computing

Traditionally, software has been written for serial computation, to be executed by a

single computer having a single Central Processing Unit (CPU). Problems are solved by

a series of instructions, executed one after the other by the CPU. Only one instruction

may be executed at any moment in time.

In the simplest sense, parallel computing is the simultaneous use of multiple computing

resources to solve a computational problem.

The computing resources can include:

- A single computer with multiple processors;

- An arbitrary number of computers connected by a network;

- A combination of both.

The computational problem usually demonstrates characteristics such as the ability to

be:

- Decomposes data space into discrete pieces of work that can be solved

 simultaneously;

- Execute multiple program instructions at any moment in time;

- Solve in less time with multiple computing resources than with a single computing

 resource.

There are two primary reasons for using parallel computing:

1- Save time - wall clock time

2- Solve larger problems

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

30

 Most high-performance modern computers exhibit concurrency (Quinn, 1994). For

example, multiprocessing is a method used to achieve concurrency at the job or

program level. Instruction prefetching is a method of achieving concurrency at the

Inter-instruction level, however, it is not desirable to call every modern computer a

parallel computer. The concurrency of many machines is invisible to the user.

 Parallel processing is information processing that emphasizes the concurrent

manipulation of data element belonging to one or more processes solving a single

problem. A parallel computer is a multiple-processor computer capable of parallel

processing.

 Speedup is the time needed for the most efficient sequential algorithm to perform a

computation and the time needed to perform the same computation on a machine

incorporating parallelism.

 Some measure of parallel performance is requiring evaluating the success of any

parallel implementation. For this purpose two comparison indices were observed for

each work dividing algorithm; speed-up, and processor efficiency

(Carriero and Gelernter, 1990). Speed up relates to the time taken to compute a task on

an uni-processor system to the time taken to compute the same problem using the

parallel implementation. Speed up is thus expressed as in equation 2.3

 Ts

 S = ------- ………….(2.3)

 Tp

The Ts depends on the time of communication between processors and the time of

computation on each sub domain. Tp expressed in equation 2.4

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

31

 Tp = T comm + T comp …………(2.4)

 The relative efficiency, based on the performance of the problem for one processor, can

be a useful measure as to what percentage of a processor time is used on computation.

Any implementation penalty would be immediately reflected by a decrease in the

relevant efficiency. The efficiency (E) is expressed in equation 2.5

 S

 E = ------ ………….(2.5)

 P

The solution will be cost optimal if the cost of solving a problem on a parallel computer

is proportional to the execution time in a single processor

(Kumar Vipin et al., 1994). The cost is expressed in equation 2.6.

 Cost = Tp * p ………..(2.6)

 In terms of comparison, the relative efficiency indicator is the major factor since it

has an implied time element in term of implementation overheads and shorter

execution. The efficiency factor also gives an indication as to the effective load

balancing of the decomposition algorithm (Rallings et al.,1998).

2.10 Parallel Programming

In fact there are many factors must be taken into account when designing parallel

programs. There are many methods used for designing parallel programs, and we will

discuss some of these methods.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

32

 One of the first steps in designing a parallel program is to break the problem into

chunks of work that can be distributed to multiple tasks. This is known as

decomposition or partitioning (Hord, 1999). There are two basic ways to partition

computational work among parallel tasks: domain decomposition and functional

decomposition.

 In the domain decomposition, the data associated with a problem is decomposed.

Each parallel task then works on a portion of the data. Figure 2.10 shows the domain

decomposition partitioning.

 Figure 2.10 Domain decomposition partitioning

There are different ways to partition data that are illustrated in Figure 2.11

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

33

 Figure 2.11 Types of domain decomposition

 In Functional Decomposition approach, the focus is on the computation that is to be

performed rather than on the data manipulated by the computation. The problem is

decomposed according to the work that must be done. Each task then performs a

portion of the overall work. Figure 2.12 shows functional decomposition.

Figure 2.12 Functional decomposition

Functional decomposition lends itself well to problems that can be split into different

tasks. For example:

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

34

Climate Modeling: - Each model component can be thought of as a separate task. Arrows

represent exchanges of data between components during computation the atmosphere model

generates wind velocity data that are used by the ocean model. The ocean model generates sea

surface temperature data that are used by the atmosphere model, and so on.

 Load balancing refers to the practice of distributing work among tasks so that all tasks

are kept busy all of the time. It can be considered a minimization of task idle time. Load

balancing is important to parallel programs for performance reasons. For example, if all

tasks are subject to a barrier synchronization point, the slowest task will determine the

overall performance as illustrated in Figure 2.13.

 Figure2.13 Load balancing

 There are some reason why image processing in an appropriate area for the

application of parallel computing (Fountain, 1994). The first reason has tow aspects: the

deviation quantities of data which may be involved, and the speed at which processing

of these images is required to proceed. There are tow quite separate ways in which this

requirement arises.

 First, many Image Processing applications occur in environments where he repetition

rate for processing images is fixed by some external constraint. The second aspect of

the need for speed lies in the requirement to program system to perform the required

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

35

tasks. The second reason why image processing is such an apposite area of application

for parallel computing. It lies in the structured nature of the data sets involved.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

35

3. THREADS PROGRAMMING AND APPLICATION

The central processing unit (CPU) of a computer is designed to perform one action at

time. It designed to perform actions at an extremely rapid rate. The structure and

execution of programs reflects one-step-at-a-time point of view. The writers of code

create programs by arranging single sequence of statements that will be executed, some

perhaps repetitively to form the program's flow of control that moves from one

statement to the next. Debugging commands that allow the program to be executed by

single steps also show the single, sequential pattern of the program's execution.

 Users, however, frequently want to perform many actions, or applications, all at the

same time. The ability to be executing more than once application at a time is often

described as "multi-tasking" since the computer is engaged in performing multiple tasks

simultaneously. The term "concurrency" is also used to describe this effect since the

actions are, or at least appear to be, performed at the same time

 (Thuan and Panksj, 1999).

3.1 What is a Thread?

A thread known as a lightweight process, which is one of potentially many

sub- processes that may run concurrently to perform a task. A thread-driven architecture

reduces over head by reducing the amount of information regarding the state of

execution of a process that has to be saved and loaded into memory by sharing sections

of the same memory areas with other weight processes

(Zhang et al., 1999). Thus, thread is essentially a program counter, a stack, and a set of

registers.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

36

 Since threads are very small compared with processes, a thread creation is relatively

cheap in terms of CPU costs. As processes require their own resources bundle, and

threads share resources. Threads are like wise memory frugal, they can increase

performance in a uniprocessors environment when application performs that are likely

to block or cause delays, such file or socket I/O

(Wagner and Towsley, 2000).

3.2 Multithreaded Programming

Multithreading is a form of concurrent programming _ away to design and implement

parallel application programs. Traditionally, a concurrent application has multiple

concurrently executing process.

 With threads, you can apply concurrent programming concepts and techniques within

the address space of a single process as well. Multiple threads enable us to write

efficient parallel programs and naturally model programming problems that are

inherently parallel. Multiple threads of execution can not share the same address space

when an address space is exclusively linked to one thread

(Pham and Grag, 1999).

3.3 Advantages of Threads

Economy and Speed, Shared Memory and Resources, Efficient Hardware Utilization,

Remote Services, and Concurrent Programming are all some of multithreaded

advantages (Thuan and Pankaj, 1999), (Tom and Don, 2000).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

37

Economy and Speed

Concurrent programs using multiple threads are faster than similar programs with

multiple Processes. Using multiple processes to achieve concurrency is expensive

because process Creation is slow. On the other hand creation, switching, and

destruction of threads are faster because they all share same process’s resources and

have a little unique context. For This reason, some implementers also refer to threads as

lightweight processes.

Shared Memory and Resources

A significant advantage of threads is their ability to share memory and resources within

a process. All threads in a process share its entire address space. Since concurrent

programs often require communication and data sharing among constituent sequential

tasks. These needs can be met efficiently with threads.

Efficient Hardware Utilization

An important advantage of multithreaded programming is the possibility of performing

I/O and computations concurrently. This lead to better utilizing different components of

a computer’s Hardware (CPU, disk, and peripherals). Using multiple threads can truly

run in parallel, allowing a process to use more than one processor simultaneously. This

increases the computations.

 Remote Services

In distributed computing, threads are essential for remote service requests, because

there is no guarantee that the results will be available immediately. If a single-threaded

client process uses a synchronous communication mechanism, such as remote

procedure call (RRC), the entire client process can hang indefinitely while waiting for a

result.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

38

 Using a multithreaded program, a client program can dispatch a thread to service

each remote request, and continue doing other useful work. You can structure a server

process cleanly by having a main thread watch the queue of incoming service requests,

then dispatch a thread to handle each request. While the server is busy servicing client

requests, it will still be available to accept and process additional requests.

Concurrent Programming

Applications with multiple threads of control are naturally concurrent. Concurrent

Programming was developed as a technique for addressing the complexity of writing

large programs (e.g., an operating system) by allowing a designer to break it up into

smaller units and deal with each one independently. With multithreaded programming,

similar benefits are now available to application programmers.

3.4 Challenges of Multithreaded Programming

Multithreaded programming involves many threads executing in parallel, and possible

interactions between them must be taken into account. (1) When sharing data between

different threads, you have to ensure that one thread doesn’t corrupt data in another

thread. (2) If one thread’s activity depends on others, you must synchronize the threads’

execution to honor this Dependency (Thuan and Pankaj , 1999).

(3) You have to determine the number of threads in the application. (4) You can create

too many threads resulting in poor performance. (5) You always have to consider

communication and synchronization costs. (6) You should also be careful that the

applications design results in fairness: all threads get a chance to do their work. (7)

Debugging a multithreaded program is harder (Thuan and Pankaj,1999).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

39

3.5 Thread Management Concepts

A thread is a basic unit of exestuation. At any given time, one thread gets to execute on

a processor while other wait for resources or a chance to run. The operating system

decides which thread gets the processor, and for how long, passed upon its internal

scheduling algorithms and policies.

Thread States

A thread can be in running or not running state. In Windows NT, a thread can be in one

of six states: ready, standby, running, waiting, transition, or terminated

 In the ready state, a thread may be scheduled for execution. The Kernel keeps of the

number of ready threads and their priorities. When the dispatcher is ready to pick a

thread to run next, it chooses the thread with the highest priority from the set of ready

threads. The state of the selected thread changes to standby and the thread waits it’s run

to run on a processor at the next context switch.

 In the standby state, the thread designated to run on a particular processor waits for

the processor to become available. There can only be one standby thread per processor.

If the priority of a standby thread is not high enough to preempt the running thread, it

must wait for the next context switch. When the running thread blocks or finishes its

time slice, a context switch occurs, and the standby thread begins to run on the

processor. At this point, its state changes to running.

 The running states indicates that a thread is executing instructions on the processor

until its time slice runs over, or it is preempted, blocked, or terminal.

 In the waiting state, a thread is suspended while a waiting for something to happen,

such as keyboard or mouse input, the signaling of a synchronization object, and so

forth. When the event happens, the thread can directly enter the ready state if the

resources it needs to run are available. Otherwise, it goes to the Transition State.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

40

 In the transition state, a thread is ready to run but the resources it needs are not

readily available. When the recourses are available, the thread goes to the ready state,

and is enable foe schooling.

 In the terminated state, a thread can terminate itself, be terminated by other threads,

or die when its parent process is terminated. At this point, the thread is removed from

the system if there are no pending handles to it. When all handles to a terminated thread

are closed, the system may reclaim the thread resources and reinitialize it for another

thread creation (Thuan and Pankaj, 1999). Figure 3.1show thread states diagram.

Figure 3.1 Possible thread states.

3.6 Parallel Threads Model

 In the threads model of parallel programming, a single process can have multiple,

concurrent execution paths (Akl, 1997). Perhaps the simplest analogy that can be used

to describe threads is the concept of a single program that includes a number of

subroutines shown in Figure 3.2

Runnable
Standby

Running

Terminated

Waiting

Transition

Ready

Pick to run Context

Switch
Preempted

Resources

Available

Unblock/Resume

Resources Available Block

Suspend Terminate
Unblock

Resource

Not available

Not Runnable

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

41

Figure 3.2 Single program illustrates parallel threads.

A thread's work may best be described as a subroutine within the main program. Any

thread can execute any subroutine at the same time as other threads.

3.7 Thread Synchronization

 One advantage of multithreaded programming is that you can speed up program by

dividing it into independent threads; the threads can execute concurrently. For example,

suppose we have to program a server application that accept requests from and provides

service to client application. Using multithreaded programming, we can implement this

application with a dispatcher thread that listens to client requests, and then create a

separate thread to handle each such request concurrently. The problem with this

strategy, however, is that we must properly synchronize the several server threads if

they access shared data, in order to ensure that updates do not interfere with one

another. In other words, one thread may need to wait for another to finish before it can

proceed (Hum et al., 1994).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

42

3.8 Threads in Client-Server Model

Distributed computing is a popular and important modern programming paradigm. Each

of the computers participating in a distributed application runs a part of the application.

Each part of distributed objects participates in a client-server relationship (Minoli and

Schmidt, 1997).

 The client-server model is a popular choice for migration from a centralized

mainframe computer to a distributed network of workstations and personal computers.

An instance of this model has to software computers, client and server who are

independent programs (often running on separate machine) that communicate with each

other using a predefined interface. A single server program services one or more client

programs. In a large distributed computing environment with many clients, server

processes can be replicated to share the load and improve response time. Figure 3.3

shows the high-level-client-server architecture of a distributed application.

Figure 3.3 Client-server architecture of distributed application.

One reason for the client-server model’s popularity is that it provides a natural and

effective way to modularize an application. For example, instead of running many

instances of large, interactive program, we can implement the core of the application as

a server program, and implement the user interface as a client program.

(Welch and Attiya, 1998).

Server process

Client 1 Client 4 Client 3 Client 2

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

43

Both clients and servers can benefit greatly by using threads. The minimal architecture

of a server process may include a thread to receive and dispatch client requests, a thread

to handle signals and exceptions, and one or more threads to carry out computation for

each client request. On the client side, threads can be very effectively used to improve

the responsiveness of application, with dedicated threads handing the user interface,

while the others pre-fetch load, and compute data in the background. Figure 3.4 shows

typical threads in a distributed application.

Figure 3.4 Multithreaded client-server architecture.

Worker Threads

 ……

E
x

ce
p

ti
o

n

H
an

d
le

r

W
 n

W
 2

W
 1

Dispatcher

R
eq

u
es

t
1

R
eq

u
es

t
n

R
eq

u
es

t
2

R
eq

u
es

t
1

R
eq

u
es

t
2

R
eq

u
es

t
n

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

44

4. SIMULATION AND IMPLEMENTATION OF THE SYSTEM

This chapter describes the model for parallel processing for large satellite images via

threads on a LAN. The implementations focus on filtering, and analyzing histogram

data information. The distributed parallel system was built based on threads around the

client-server-computing model across LAN.

 Images are loaded to the server which they are partitioned to sub-images on the

server, and then sent to client for processing. Then every processed sub-image is sent

back to the server. Image processing application will be very important when the size of

the image is very large. This is especially for satellite images. In this domain, the size of

image can be more than 5000x5000 pixels some times. The required computational

power is very high and the time needed to process images on a single CPU is very

important.

4.1 Basics of Satellite Image Data Samples

Satellite images are really something different: They are unique and immensely

powerful in conveying information about the environment. They are powerful not in

themselves but in the way that they empower every one of us who has the opportunity

to use them. Satellite images are larger extent, fewer details (comparing to air

photography), suited for homogenous areas, and getting a survey.

 The data samples that we applied in the proposed system are concerned with

(AVHRR) Sensors, which has five channels that collect measurements in different

wavelengths. The first two channels collect visible and near-infrared measurements and

the last three collect thermal measurements in different spectral resolutions. Where the

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

45

pixel sizes is 30 meter. Most of these samples are JPG, JPEG format. Its dimensions are

ranged between 890x1120pixel and 3120x2990 pixel. Every image is differ from other

by its represented information, where, some of these has a homogeneous levels of pixel

intensities and digital values (like a water section), where, all pixels in this area are

nearly equivalent in their features. And the others has a heterogeneous levels of pixel

intensities and digital values (like urban section), where, all pixels in this area are nearly

not equivalent in their features.

 Some of collected data samples (satellite images) are obtained from Jordanian GIS

center, like Amman city, Jordan valley, Rum mountains, and some internet image, like

Mississippi river, little Colorado river, and others.

4.2 General description of the Proposed Approach

The work presented here concerns with a parallel processing of some applications of

image processing, like sharpening filter and normalized image histogram that are

described later. It involved of using multithreaded around client-server model. The data

flow diagram and transmission is shown in Figure 4.1. Images were partitioned by the

server threads (ST) and sent to Clients threads (CT), the CTs process and send back the

processed parts to the server. The later resample the parts to new processed image and

restores it.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

46

 User divide the image

 Request into sub images

- Processed

 image

 Ack: processed sub image

(a) Data diagram

 Send
 Receive

 Send

 Receive

 Send

 Receive

(b) Data transmission

Figure 4.1 Data diagram and transmission for the system

The behavior of the system and the steps passed on it as follows:

Input: unprocessed image (2D array image value)

Step1: load the unprocessed image from storage media to multithread server control.

Step2: apply the domain decomposition technique to divide the image into

 number of sub-images (partitions), P(n,m), where n,m are number of pixel.

Server control

ST1: sub-image1

ST2: sub-image2

STn: sub-image n

Client 1
CT1: read

CT2: process

CT3: write

Client 2

CT1: read

CT2: process

CT3: write

Client n
CT1: read

CT2: process

CT3: write

Image data

storage

- disks

- internet

 ..

Multithreads

server control

ST1

 ST2

 ST3

 STn

Pn

P3

P2

P1:

Sub

image 1

Multithreaded client

CT1: read unprocessed sub-image

CT2: processed sub-image

CT3: return processed sub-image

 to the server

Re-assemble

the processed

sub images to

new Image

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

47

Step3: create N threads (ST), where 3N threads running in parallel (CT) as:

 N threads reading the N unprocessed sub image parts.

 N threads processing N sub images partition.

 N threads written back N processed sub images parts to new image

 (Processed image).

Step4: apply filtering and image histogram process to each sub-image part in each

 client.

Step5: resample the processed sub-image partitions into new image

 (Processed image) in the server.

Output: processed image (2D array image value).

4.3 Mathematical Model and Implementation of the System

4.3.1 Mathematical Model

Assume there is an unprocessed Image G, and a server S, contains N of threads ST,

that defined as ST1, ST2, ---, STn. It’s communicate with N of Clients Cs, each one

contains 3 threads CT, that defined as CT1, CT2, and CT3.

 The S decomposed G into N sub-images (partitions): P1, P2, ----, Pn, then it sends

each Pi to Ci (i = 1,….,n). For example, ST1 sends P1 client CT1, CT2 performs the

computations, and CT3 send back the results.

The S will receive the processed partitions Pi, (i = 1,….,n) from all clients C, and

resample it to get new Image (Processed image) .

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

48

4.3.2 Methodology of the System

 The target hardware consists of a heterogeneous collection of distributed workstations,

and a server on a LAN. The multithreaded architecture was applied to get a high

performance. First, the whole requested image is loaded to the server control on a LAN

from storage device which may be a disk or from the internet or other devices.

 The server starts by decomposing the data domain to sub-images according to

number of clients (workstation connected to the server). The images are partitioned into

vertical Blocks. In fact, this technique was chosen for some reasons. The image

dimensions (width, height) are not equivalent; it is easy to construct the check board in

parallel, provides greatest flexibility in parallel image processing, and applicable for

writing the source code programs. The calculations regarded to partitioning are

independent. This avoids the conflicts between blocks, in order to avoid the false

sharing. Figure 4.2 shows an example of domain decomposition technique for Amman

city image.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

49

(a) Original image for Amman city

(b) Image decomposition of the original image due to four threads

 Figure 4.2 a) the image before decomposition b) the image after decomposition

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

50

 When the image was partitioned according to the number of threads on the server,

each server thread (St) will deal and communicate with one client on a LAN, by

sending its sub-image to the client who contains three threads. Here, the benefit of

multithreaded will arise. One thread reads the sub-image, a second one does the

calculation or processing, and a third one writes back the processed sub-image to the

server.

 We applied some of image processing operation for each sub-image in each client on

a LAN, like sharpening filter that accentuates the contrast and the high frequency

component of the image, and the normalized histogram (brightness histogram). Which

is a graphic plot of pixel values within the image that shows the distribution of

brightness level by representing pixel intensities (Sanchez and Canton, 1999). In fact,

it’s not necessary to apply these image process operations, or just only satellite images

on the system, so, we can apply any other operations of processing. While the

objectives of the research is to find a new technique to process any kind of image

processing operations effectively.

 When all distributed sub-images are back to the server, the server re-assembles and

stores it in storage device as show in Figure 4.1. An example of decomposing of input

image (unprocessed) with size 220x200 for fragment of Amman City. Some image

processing operations, and the output image (processed) are shown in Figure 4.3.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

51

(

b)

 (d) (c)

Figure 4.3 The processing steps: a) the input image b) image partitions after filtering

 c) histogram for the image after resample d) the output and processed image

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

52

4.3.3 Multithreaded Parallel Processing Model

There are number of threads created on the server and three threads included in each

client: one for reading the sub-image, one for processing, and one for writing back to

the server. This is possible by taking advantage of the multithreading features of current

operating system. One thread is created for one of these three tasks, so, it possible to

read the next sub-image while the current sub-image is processed and the previous one

is written back to the sever.

 It possible to distribute the workload on different processors by doing N times these

three threads in parallel. This means that 3N threads run in parallel in an application. N

threads can read the sub-image, N thread process the sub-images, and N threads write

back the sub-image.

 The pseudo code below shows the operations applied in both, the server and each

client

SERVER_THREADS(Num_of_Thread, Client_connection, Creat_Thread[])

Begin

 In_image = im_read(size,format)

 For I = 1 to Num_of_Thread do

 Begin

 Server_decom_image(In_image,Num_of_block,size)

 Creat _Thread[I] = new thread

 If (I = Num_of_Thread) then

 For J = 1 to num_of_block do

 Begin

 While client = accept(server,socketadd)

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

53

 begin

 Client= clientssocket[J]

 Send_block(client,type,source,massage)

 J = J + 1

 End

 End

 Else

 I = I +1

 End

End.

Server_res_image(Out_image,Num_of_block,bufer)

Begin

 For k = 1 to Num_of_block

 Beign

 Bufer = Rec_block(client,type,source,massage)

 If (k = Num_of_block) then

 Out_image = writ_image(bufer)

 Else

 K = k +1

 End

End.

CLIENT_THREADS(Num_of_thread = 3, clientconnection,creat_Thread[])

Begin

 For I = 1 to Num_of_Thread

 Begin

 Creat_thread[I] = new thread

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

54

 I= I +1

 While client(true)

 Begin

 Thread[1].start = Blo_read(sblock,type,sourc,massage)

 Thread[1].teminate

 Thread[2].process = get_hpassfilt(sblock,matrix)

 Get_normhistg(sblock,color,matrix)

 Thread[2].terminate

 Thread[3].send = Blo-send(sblock,bufer,type,source,masasage)

 Thread[3].terminate

 Closesoket(client)

 End

 End

End.

4.4 System overview

4.4.1 Hardware

The proposed parallel system was applied over a LAN in star topology form. It is a

multi computer architecture, which can be used for parallel computation. It is a system

built using commodity hardware components such as PC’s connected via Ethernet or

other network. The proposed system consists of one server node and number of client

nodes. All nodes are connected by 24-port 100 Mbps switch Hub. Figure 4.4 shows the

architecture of the system.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

55

 Figure 4.4 System architecture

For the parallel computing system, the server node has Intel Pentium II 366 MHz

processor and 128 Mbytes of shared local memory, and each client node has Intel

Pentium I 233 MHz processor.

4.4.2 Software

C++ was chosen to be the software that we write the parallel system implementation.

Because, it support a more flexible using of threads features, and also, it is flexible to

demonstrate the communication over the parallel system.

4.5 Calculations and Measurements

This section describes how the whole computations are calculated in the system.

First, the start time was initiated to zero before applying the system. When the system

started, the time (start time) for all threads on the server control was recorded, so when

all clients sent back the processed sub-image we end the time, and then make the

calculation. Figure 4.5 show a calculation model of the system.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

56

End time = time Start time = 0;

 Start time

 Partitioning image

 Send sub-image1 to client1

 Resample processed Send sub-image2 to client2

 Sub-images

 Send sub-image N to client N

 Sub-image part

 Process sub-image

 Send processed sub-image to server

 Processed sub-image

Figure 4.5 Calculation model of the system

The Tp is the sum of time to partition the images, sending the sub-images, processing

sub-images, sending back the processed sub-images, and re-assemble the sub-images.

The communication time is the time to send the sub-images and receive them back. The

computation time is the time to decompose the data, process the sub-images, and

combine the results.

4.6 Results

Many experiments and tests of different sample data were done. Every image is tested

15 times and the median of computation time was taken. The results of the experiments

are shown in Tables 4.1 through 4.4 and Figures 4.6 through 4.11.

Processing

in server

control

Processing

In client

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

57

Table 4.1 Execution Time for Images of different size on different number of threads

Execution Time in Seconds

No. of

Thread

Image

Size

200x220

Image

Size

550x510

Image

Size

890x780

Image Size

1190x1110

Image Size

1500x1480

Image Size

1725x1640

Image Size

2260x2210

Image Size

2690x2580

Image Size

3120x2990

1 Serial 4.05 17.96 50.51 102.32 155.15 237.52 336.53 461.22 598.6

3 3.35 13.81 35.82 66.44 89.6 124.35 148.9 178.76 208.57

6 2.1 8.93 23.06 45.47 58.1 72.41 91.2 107.01 120.2

9 1.81 5.93 14.39 24.89 32.05 47.4 56.75 70.84 83.37

12 .99 4.09 10.76 20.26 27.65 38.3 47.26 54.71 64.29

16 .69 2.99 7.86 14.98 21.69 29.87 38.22 44.89 49.11

20 .82 3.4 8.61 16.6 23.88 33.1 44.12 51.35 59.81

Table 4.1shows the execution time of experiments that were tested on machines with 1,

3, 6, 9, 12, 16, and 20 threads. The images size where different and variable, the

smallest image has 44000 pixels and the largest image has 9328800 pixels.

Table 4.2 Speedup for Images of Different size on different number of threads

Speedup – S

No. of

Thread

Image

Size

200x220

Image

Size

550x510

Image

Size

890x780

Image Size

1190x1110

Image Size

1500x1480

Image Size

1725x1640

Image Size

2260x2210

Image Size

2690x2580

Image Size

3120x2990

1 Serial 1 1 1 1 1 1 1 1 1

3 1.21 1.3 1.41 1.54 1.73 1.91 2.26 2.58 2.78

6 1.93 2.01 2.19 2.25 2.67 3.28 3.69 4.31 4.98

9 2.23 3.03 3.51 4.11 4.84 5.01 5.93 6.51 4.18

12 4.09 4.39 4.69 5.05 5.61 6.2 7.12 8.43 9.31

16 5.86 6.01 6.42 6.83 7.15 7.95 8.8 10.37 12.18

20 4.93 5.28 5.86 6.16 6.49 7.17 7.62 8.98 10.01

Table 4.2 shows the speedup (S) for images of different size, where the highest S is

12.18. This achieved when image size is 3120x2990 on 16 threads.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

58

Table 4.3 Efficiency for Images of different size on different number of threads

Efficiency

No. of

Thread

Image

Size

200x220

Image

Size

550x510

Image

Size

890x780

Image Size

1190x1110

Image Size

1500x1480

Image Size

1725x1640

Image Size

2260x2210

Image Size

2690x2580

Image Size

3120x2990

3 0.40 0.43 0.47 0.51 0.57 0.63 0.75 0.86 0.95

6 0.32 0.33 0.36 0.37 0.44 0.55 0.60 0.71 0.83

9 0.52 0.34 0.38 0.45 0.53 0.56 0.65 0.72 0.80

12 0.34 0.36 0.39 0.42 0.46 0.52 0.59 0.70 0.77

16 0.37 0.38 0.40 0.43 0.44 0.50 0.55 0.64 0.76

20 0.24 0.26 0.29 0.30 0.32 0.36 0.38 0.44 0.50

Table 4.3 shows the efficiency (E) for different image sizes, the highest value of

E = 0.95. It was achieved when the size of the image was 3120x2990 and number of

threads was three. The ratio of the image size to number of threads was scaled as

log10 (3120x2990 / 3) = 6.49

Table 4.4 Ratio of image size to number of threads, scaled using logarithmic scale to

 base 10 .

Ratio of image size to number of threads

No. of

Thread

Image

Size

200x220

Image

Size

550x510

Image

Size

890x780

Image Size

1190x1110

Image Size

1500x1480

Image Size

1725x1640

Image Size

2260x2210

Image Size

2690x2580

Image Size

3120x2990

3 4.16 4.97 5.36 5.46 5.86 5.97 6.22 6.36 6.49

6 3.86 4.66 5.06 5.34 5.56 5.67 5.92 6.06 6.19

9 3.68 4.49 4.88 5.16 5.39 5.49 5.74 5.88 6.01

12 3.56 4.36 4.76 5.04 5.26 5.37 5.61 5.76 5.89

16 3.43 4.24 4.63 4.91 5.14 5.24 5.49 5.63 5.76

20 3.34 4.14 4.54 4.81 5.04 5.15 5.39 5.54 5.66

Table 4.4 shows the ratio of different images size to different number of threads as

 Log10 (image size/number of threads)

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

59

(a)

 (b)

Figure 4.6 a) Execution time (Secs) versus different number of threads for

 several images with different size

 b) Execution time (Secs) versus images size on different number of

 threads with different sizes.

Figure 4.6 show how the execution time decrease while number of thread increased.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

60

Figure 4.7 Execution time (Secs) versus different number of threads on image

Size 3120x2990.

Figure 4.7 shows the reduction in execution time when there was increasing the number

of thread (n) for a fixed size of an image. The relation close to

Tp α constant / n x m.

Figure 4.8 Execution time (Secs) versus different image size on 16 threads.

Figure 4.8 shows the relation of Tp with size of image when number of threads is fixed.

The Tp α constant x L, where L is the number of pixels (image size).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

61

 (a)

 (b)

Figure 4.9 a) Speedup versus number of threads working on different images size

 b) Speedup versus different images size on differnet number of threads

In Figure 4.9, the maximum speed up was achieved when the number of threads was 16,

where Sp = 12.18.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

62

Figure 4.10 Efficiency 100% versus number of threads working on different.

In Figure 4.10, the highest value of E was achieved when the number of threads was

three, where E = 0.95 for images size 3120x2990.

 (a)

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

63

 (b)

 (c)

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

64

 (d)

 (e)

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

65

 (f)

Figure 4.11 Ratio of different images size to different number of threads.

a) 3 threads b) 6 threads c) 9 threads d) 12 threads e) 16 threads f) 20 threads

Figure 4.11 shows that E is increasing as the ratio if image size to number of thread

increase. Because the computation is dominant. This indication explains that the system

will be more applicable to implement for large images.

4.7 Performance Analysis

As the results, that had shown in the Tables 4.1, 4.2 and the graphs in Figures 4.6

through 4.9. We see that 16 threads is best number that was taken less execution time

for all different image sizes and the maximum speedup 12.18 for these different image

sizes. But this not necessary to be the cost effective.

 For the Efficiency that is shown in Table 4.3 and Figure 4.10, the highest value of E

is achieved when image size =3120x2990 and N=3 threads, where the ratio of image

size to number of threads was 3,109,600 pixel/thread, which expressed as

log10(3120x2990 / 3) = 6.49 pixel/thread as shown in table 4.4. where E =0.95. this

indication support the relation in equation 4.1

E (n x m, p) α n x m/p ………..(4.1)

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

66

Where E is efficiency, n x m represent the problem size (image size), and p the number

processors (in our case p represent number of threads), so when problem size increases,

the efficiency will increase. Figure 4.11 explains the proof of this relation.

 But for cost effective, we see that E is higher than 80% for treads: three to nine for

image size 3120x2990. From this, we conclude that, the system with nine threads would

be cost effective. This will be shown clearly, when it applied to larger satellite images

(i.e. 4000x4000 and more) than we used.

 From the performance analysis, we inferred that, the system to be applied for large

image size would be more efficient and more applicable, where the computation takes

the longest runtime.

 The proposed system satisfied the result in execution time that is less than seven times

in average comparing to other researches, where the most of these systems are depend

on using multiprocessors, clustering, and PVM

(Hawich and James,1997),(Yang and Hung, 2000), (Gess et al, 1996).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 67

5. CONCLUSION AND FUTURE WORK

5.1 Conclusions

An application of parallel and distributed computing for remote sensing data such as

satellite image processing was explored. The splitting of large images (satellite images)

into sub-images has been applied to the image processing using parallel processing via

threads on a LAN. However, this technique is suitable in general and can be applied to

many image-processing algorithms.

 This thesis shows that threads are very portable for parallel applications or in

distributed systems. In most cases, threads help speeding of the parallel

implementations, by improving input/output operation and by distributing the workload

on different processors that are available in the distributed system.

 We have implemented a system for different large satellite images, and measured a

good speedup performance for the parallel and distributed components on the system.

The Execution time and speedup, for the tested samples, show that 16 threads were

taken less execution time and maximum speedup of 12.18. But this is not necessary to

be the cost effective. The efficiency indicates that, the nine threads are the best for cost-

effective application on the proposed system, while E is higher than 80% for

Threads: three up to nine for image size 3120x2990. Although, the highest value of

 E = 0.95, where the ratio of image size to number of threads was 3,109,600

pixel/thread, when image size is 3120x2990 and number of thread is three. The Results

are encouraging compromising to other studies.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 68

5.2 Future Work

 Indeed, image processing and parallel processing have a very wide application in

most fields, such as, remote sensed data like satellite images, where we cannot collect

the most of theses application in our system. The system can be expanded for the

remote sensed data processing applications, such as: image classification, image

correlation and geo-rectification. The approach can be modified for distributed parallel

image processing system using the advantage of multithreaded for covering an

important segmentation and visualization algorithms for 3-Dimensional (3-D) remote

sensed data, based on a heterogeneous Asynchronous transfer mode (ATM) networks.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

69

REFERENCES

Accuweather organization. 2000. Frequently Asked Questions about Satellite Images.

Available at http://www.accuweather.com/iwxpage/adc/help/pr_satellite.htm

Akl, Selim. G. 1997. Parallel Computation: Models and Methods. 1st
. edition. Prentice-

Hall, Inc. USA.

Anderson, Jean. T., and Stonbraker, Michael. 2000. SEQUOIA 2000 METADATA

SCHEMA FOR SATELLITE IMAGES. EECS Department. University of California.

Berkely. California. Available at. citeseer.nj.nec.com

Baxes, Gregory. A. 1994. Digital Image Processing principle and applications. 1st
.

edition. John wily & sons. Inc. USA.

Behrooz, Parhami. 1999. Introduction to Parallel Processing Algorithms and

Architectures. Plenum Press. New York.

Bergman,Larry., Stolorz, Paul., Blom, Ron., Stanfill,Dan., Kwan, Bruce., Crippen,

Bob., Lyster, Peter., and Li, Peggy. 1998. ”CALCRUST: InteractiveThree-Dimensional

Rendering of Multiple Earth- Science Datasets”. Jet Propulsion Laboratory. Dave

Okaya. University of Southern California. Available at www.cacr.caltech.edu

Canada Avalanche Association. 2000. Satellite images: A simple Tutorial. Mountain

Guide. Cyril Shokoples. Available at. http://www.compusmart.ab.ca/resqdyn/index.htm

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

70

Carriero, Nicholas., and Gelernter, David. 1990. How to write Parallel Programs.1
st
.

edition. Cambridge university press. Cambridge, London.

Chaver, D., Prieto, M., Piuٌel, L., and Tirado, F. 2002. ”Parallel Wavelet Transform for

Large Scale ImageProcessing”. Departamento de Arquitectura de Computadores

Automtica Facultad de C.C. Fsicas. Universidad Complutense.Ciudad Universitaria s/n

28040 Madrid. Available at. www.acya.ucm.es

Commonwealth of Australia. 2002. About the Satellite Images. Commonwealth Bureau

of Meteorology. Available at. www.bom.gov.au

Digital image processing. 2000. Available at. www.csc.fi

Escobar, F., Hunter, G., and Bishop, I. 2000. Introduction to GIS. Department of

Geomatics. University of Malbourne. Available at www.sli.unimelb.edu.au

Fountain, T. J. 1994. Parallel Computing Principle and Practice. 1st. edition.

Cambridge university press. Great Britain at the university press. Cambridge, London.

Fukoda, Masayuki., Watanabe, Satoshi., Tanimoto, Toshiya., and Miyahara, Masakatsu.

2000. “High Performance Processing System with General-purpose Computer”. NEC

Corporation. 4035 Ikebe-cho. Yokohama. Japan.

Available at www.gsdd.spc.hy.nec.co.jp

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

71

Giess, Christoph., Mayer, Achim., Evers, Harald., and Meinzer, Hans-Peter.1996.

“Medical Image Processing and Visualization on Heterogeneous Clusters of Symmetric

Multiprocessors Using MPI and POSIXthreads”. Deutche Krebsforschungszentrum.

Dept. medical and Biological Informatics. Heidelberg. German. Available at.

ipdps.eece.unm.edu

Gupta, Ravi. P.1991. Remote Sensing Geology. 1st. edition. Springer-verlag berlin.

Heidelberg. German.

Harris, Ray.1987. Satellite Remote Sensing. 1st
. edition. Routledge & Kegan paul Ltd.

London & NewYork.

Hawich, K. A., and James, H. A. 1997.“Distributed High-Performance Computation for

Remote Sensing”. Department of computer science. University of Adelaide. SA 5005.

Australia. Available at. www.cs.adelaide.edu.au

Hawick, K.A., Coddington, P.D., and James, H.A. 2002. ”Distributed Frameworks and

Parallel Algorithms forProcessing Large-Scale Geographic Data”. Department of

Computer Science.School of Informatics. University of Adelaide.University of

Wales,Bangor,SA 5005,Australia.North Wales,LL57 1UT,UK. Available at.

www.pangor.ac.uk and www.cs.adelaide.edu.au

Hord, R. Michael. 1999. Understanding Parallel supercomputing. 1st
. edition. IEEE,

Inc. USA.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

72

Hum, Herbert. H. J., Theobald, Kevin. B., and Geo, Guang. R. 1994. Building

Multithreaded architecture with off-the-self microprocessors. School of computer

science. Canada. Available at. www.ftp.capsl.udel.edu

Kasahara, Hironori., Obata, Motoki., and Ishizaka, Kazuhisa. 2001. ”Automatic Coarse

Grain Task Parallel Processing on SMP using OpenMP”. Waseda University.3-4-1

Ohkubo. Shinjuku-ku. Tokyo. 169-8555. Japan. Available at.

www.scar.elec.waseda.ac.jp

Kingston Center For GIS. 2000. Introduction to GIS and Geospatial Data. Kingston

Center for GIS. Kingston University. Kingston upon Thames. KT1 2EE. UK. Available

at www.Kingston.ac.uk

Kumar, Vapin., Grama, Ananth., Gupta, Anshul., and Karypis, George. 1994.

Introduction to Parallel Computing, Design Analysis of Algorithms. 1st
. edition.

Benjamin/Cummings Publishing Company, Inc. USA.

Minoli, Dan. And Schmidt, Andrew. 1997. Client/Server Over ATM. 1st
. edition.

Manning Publication. USA.

Pham, Thuan. Q., Garg, Pankaj. K. 1999. Multithreaded Programing with Win32. 1st .

edition. prince hall,PTR, Uper Saddle River, New Jersey 07458.

Quinn, Michael. J. 1994. Parallel Computing: Theory and Practice. 2nd
. edition.

McGraw-Hill,Inc. Singapore.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

73

Rallings, Philip. J., Ware, J. Andrew, and Kidner, David. B. 1998. Parallel Distributed

Processing for Digital Terrain Analysis. Division of Mathematics & Computing,

University of Glamorgan, Pontypridd, Rhondda Cynon Taff WALES CF37 IDL.

Available at. www.geocomputation.org

Richason, Benjamin. F. 1983. Introduction to Remote Sensing of The Environment. 2nd
.

edition. The National Council for Geographic education. USA.

Sabins, Jr. F. 1987. Remote sensing: principles and interpretation. 1
st
. edition. New

York: W.H. Freeman.

Saltz, Joel., Acharya, Anurag., Sussman, Alan., Hollingsworth, Jeff., and Beynon,

Michael. 1999. “Tuning the I/O Performance of Earth Science Applications”.

University of Maryland and Center of Excellent in Space Data & Information.

Science (CESDIS), NASA Goddard. Available at www.cs.umd.edu

Sanchez, Julio., and Canton, Maria. P. 1999. Space Image Processing. 1st
. Edition. CRC

Press LLC. NewYork.

Spencer, John. 2000. Image Enhancement . available at. www.cpc.nuc.edu

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

74

Taylor, Stephen. C., Armour, Bernard., Hughes, William. H., Kult, Andrew., and

Nizman, Chris.1999. ”Operational interferometric SAR data processing for

RADARSAT Using a distributed computing environment”. Atlantis Scientific Inc.

available at. www.atlsci.com.

Wagner, Tom., and towsley, Don. 2000.Getting Started With POSIX Threads .

Department of Computer Sience, University of Massachusetts at Amherst. Available at

dis.cs.umass.edu

Welch, Jennifer., and Attiya, Hagit. 1998. Distributed Computing: Fundamentals,

Simulations and advanced Topics. 1st. edition. McCraw-Hill international (UK) limited.

Great Britain at the university press. Cambridge, London.

Yang, Chao-tung., and Hung, Chi-Chu. 2000. “Parallel Computing in Remote Sensing

data Processing”. Ground System Section. National Space program office.

Hsinchu.Taiwan 300, R.O.C. available at. www.nspo.gov.tw

Zhang, Yunqing. P., Fracassi, John. F., Wiggins, John. E., Glenn, Scott. M., and

Grassle, J.F.1999. RODAN: RUTGERS OCEAN DATA ACCESS NETWORK

POWERED BY JAVA TECHNOLOGIES. Rutgers University. New Brunswick,

NewJersey. Available at. marine.rutgers.edu

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 75

Appendix 1

Abbreviations and acronyms

AMI Active Microwave Instrument, on ERS-1.

APT Automatic Picture Transmission.

ATS Application Technology Satellite.

AVHRR Advanced Very High Resolution Radiometer,

 on Noaa satellite.

CCT Computer-Compatible Tape.

CEOS Committee for Earth Observation Satellite.

CGMS Coordination of Geostationary Meteorological

 Satellite committee.

CRC Color Ratio Composite.

EOS Earth Observing System.

Eosat Earth Observation Satellite Corporation.

Essa ESSA satellite.

ETM Enhanced Thematic Mapper.

GEO Geostationary Earth Orbit.

GMS Geostationary Meteorological Satallite.

GOES Geostationary Operational Environmental Satellite.

HRPT High Resolution Picture Transmission.

HRV High Resolution Visible, sensor on the SPOT satellite.

IPOMS International Polar Orbiting Meteorological Satellite

 Committee.

IRS-1 Indian remote sensing satellite.

Abbreviation Acronym

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 76

J-ERS-1 Japanese environmental remote sensing satellite.

LEO Low Earth Orbit.

LFC Large Format Camera, on the space shuttle.

MSS Multispectral Scanner, on Landsats 1-5.

NASA National Aeronautics and Space Administration.

Noaa NOAA satellite.

NRSC National Remote Sensing Center.

SAR Synthetic Aperture Radar.

SIR Shuttle Imaging Radar.

SMS Synchronous Meteorological Satellite.

SPOT Satellite Probatoire d’Observation de la Terre.

Tiros Television and Infrared Observation Satellite.

TM Thematic Mapper, on Landsata 4 and 5.

VISSR Visible and Infrared Spin-Scan Radiometer, on SMS

 satellite

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 77

Appendix 2

Summary of thread architectures for various operating system

Digital Equipment Corporation, CMA threads User-level

Distributed Computing Environment (DCE) User-level

Xerox’s Portable Common Runtime (PCR) User-level

Fast Threads User-level

Windows NT Kernel-level

MACH Kernel-level

Chorus Kernel-level

OS/2 Kernel-level

Sun Microsystem’s SunOS Multiplexed

University of Washington’s Fast Thread Scheduler activation

 System Thread package architecture

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 78

Appendix 3

Units of Measurement Frequently Used in Remote Sensing

Kilometer Km 1,000

Meter m 1.0

 -2
Centimeter cm 0.01 = 10

 -3
Millimeter mm 0.001 = 10

 -6
Micrometer µm 0.000001 = 10

 -9
Nanometer nm 10

 -10
Angstrom Å 10

Hertz Hz 1

 3
Kilohertz Khz 1000 = 10

 6
Megahertz Mhz 1,000,000 = 10

 9
Gigahertz Ghz = 10

Length unit Abbreviation Value in meter

Frequency unit Abbreviation Value in cycles-per-second

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 79

Appendix 4

Examples of Some Types of Satellite Images

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 80

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 81

��������� 	�
���� �������� ������ �� ����� ���� ������� ������
����� ����� ���� ��� �� ����

�
�!

����� �� ��� ���!

"�����
��������
��� ����
��

#$$$$$$���

���� �� ���� ا�����ر �� ��، و	��� ��ر ��ا�", ه*�ك �� ���) '& ��% وا��$�ام ا�"!� �ت ا

�!� ا-�� ����� آ"!�ة ج�ا وا�0 أ .�0 ���!�ت م���ر ا�:*��!� '& ا9و � ا-	!�ة، وه8ا ��%�7 ����6آ!� إ;

<!��=����� . ا��$��B وا��& ت�'� آ@�ءة ���!� و�6;< ا������از�� و ا���� ا���8�G، أ�"EF ا� �"�*'

����=@�ءة ا �!��!H��!� أو ا!I����ز�� و��=< ���) ه& ا���H�ة ا���� ا�="!�ة ا��& ت��7% ا����!� وا

	�� ����� .ح����ت آJ!�ة�
 � ���� ����� ������ ���� ��� ����� �� ��
�
 �
� ��������

�� ����� !���
� ����� ��� "�
�
 # �
�� ��$���.

&� ���' ������ ()* "���� ������ ��� , -�� �./ 0$, ��1 !��/� ���2
� ��2� �

 ����	� �� ����� �� ��� 0��31 4��� ��)* �
 5��63� 0$ 7� ��� ��/�) ����

� ���� �

 ���9 �� (7� ��� ����	� �� ����� �� ��� ��1 ����;�� 5������ ����� �� ���	� $�� ���

�� 0$ 7�� ���
��� � ����� � !0�2�� <�)� ������ ����� �� ��6
�� $�� ��1 ���2�� !��/�

���	�.

���	� ���� ��� ��
��
� ����3/� ���'9 ��/ �� ��3�� �=$
� 4���
� ��� > ���
 ��6
���

��=� 7?�� ")�� ������� �������� 4�.
��� �'�� �� ���� ��/23 �� ��� 7��)* � " "��
�

 !��)� �� ��/23 �� ��/� � ���� �� ���=��������� . 5��� , �
� ���
� 7&	 ���

 �� ���	
��� ����	� �� ����� �, � � 5��@3�� 4���
� 0� �� �/�	
� �
� A=�
3�� �����2��

����� ��� ������� �������� ��$�
� 7&	 �� !0�6�� ��$ ������ ������� ���� . ��� �'�

��� ()* ��� ��� , �
� ����
	# ���3 �, -�� 7?�9 7�� �* ����	 �� ���� ���
 � ��3

 �� ���, ��1 ��/� !0�6��80 % !��/� � � ��� ���3�3120x 2990 ���� C�� ���
���� 5

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

 82

��@3� �� 4���
�� ��	
�� ")� 7?�9 ���� . �* !0�6��� ���' ���, �, -��0.95 ��� ��� ���3�

 � �� �?&? ����	� �� ����� !��/�3120x 2990 !0�6� 7�� �, ��� A=�
3� ()* ���
 � 5

 ���� �* ����	� �� ����� ��� ��1 !��/� � � ���3 ���
 ���3� ����� 7D/��3,109,600

���	 A���� 7�� 7��� .��D ��� ���D�� !0�6� ��� �3�/� �2� 5<�) ��1 ����;��.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

	1.pdf
	1-8.pdf
	9-35.pdf
	35-43.pdf
	44-66.pdf
	67-68.pdf
	69-74.pdf
	75-80.pdf
	81-82.pdf

